Users Guideto ADIC 1.1*

Paul D. Hovland and Boyana Norris

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439 USA
hovl and@mts. anl . gov, norris@rs. anl . gov

Argonne Technical Memorandum ANL/MCS-TM-225

*This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Compu-
tational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38; by the National Aerospace Agency under
Purchase Orders L25935D and L64948D; and by the National Science Foundation, through the Center for Research on Parallel Computation,
under Cooperative Agreement No. CCR-9120008.

Abstract.
This guide describes the use of the Automatic Differentiation in C (ADIC) system. ADIC is a suite of tools and libraries that automates

the process of generating derivatives for scientific programs. In the context of solving PDEs, optimizations, sensitivity analysis, and inverse
problems, researchers often require the derivatives 8 f /9 of a function f expressed as a program with respect to some input parameter(s)
z. Automatic differentiation (AD) techniques augment the program with derivative computation by applying the chain rule of calculus
to elementary operations in an automated fashion. ADIC uses sophisticated compiler techniques to augment the input C programs with
derivative computation capability in an automatic fashion. It also provides a finer control of derivative code generation process via control
scripts and pragmas. Another significant capability of ADIC is its component architecture, AlF, that allows ADIC’s capability to be extended

via plug-in modules.
For more information about ADIC, see http://www.mcs.anl.gov/adic.

Contents

1 Introduction 1
1.1 Terminology o o 1
1.2 Overview ofthe ADIC System 2

2 Getting Started 3
2.1 System ReqUIrements e 3
2.2 Installation 3
2.3 Directory Structure 3
2.4 Setting Up the Environment L 4
2.5 BuildingRuntime Libraries 5

3 Running ADIC: An Example 6
3.1 ACloser Look at the Preparation 11
3.2 ACloser Look at the Generated Code 11
3.3 AQCloser Lookatthe Driver 14

4 Using ADIC 17
4.1 Preparingthe Source 17
4.2 Invoking ADIC L 18

5 The Gradient Module 20
51 Computationof Jx M 21

6 Intrinsic Functions 23

7 Using Control Scripts 24
7.1 [GENERAL] . . . 25
7.2 [MODULES] 26
7.3 [INACTIVEFFUNCTIONS] e e e e 26
7.4 [NOPREFI X.FUNCTI ONS] . . . o o e e e e e 27
75 [ACTIVEFUNCTI ONS] o e e e e e e e 27
7.6 [INACTI VENVARI ABLES] e 27
7.7 [INACTIVETYPES] e e e e 27
7.8 [INTRINSI CCONTROL] o o e e e e e e e e e e 28
79 [INTRINSICFUNCTIONS] e e 28
700 [DEFINES] . . . 28

7.11 [UNEXPANDEDMACROS] . . . o o e e e e e e e e e e e 28

10

11

12

13

14

712 [SOURCEFFILES] o e 28
713 [STANDARDI NCLUDES] ot et e e e e e e e e e e e e e 29
7.14 [NOI NLIENEL NCLUDES] ot oo e e e e e e e 29
7.15 Derivative Modules 29
Building ADIC-Generated Derivative Code 30
Handling C Preprocessor Directives and Macros 32
Controlling Naming 35
Handling Intrinsic Calls 36
Advanced Control 37
Troubleshooting 38
Known Problems 39

Chapter 1

| ntroduction

Derivatives play an important role in computational science and engineering. Automatic differentiation (AD) is
a technique for evaluating derivatives of a function written as a computer program by applying the chain rule of
differential calculus at the elementary operation level. Since AD differentiates algorithms rather than formulas,
it can deal with arbitrary programs representing these algorithms.

ADIC (Automatic Differentiation in C) is an AD tool to get accurate derivatives of programs written in
ANSI-C. Given a set of C source files, ADIC produces a new set of C source files enhanced with derivative
computation capabilities. The generated sources are made as portable as possible. In addition to ANSI-C, ADIC
currently supports some C++ programs, although the coverage of the language is incomplete, notably with regard
to templates, exceptions, and operator overloading. Readers are referred to [4] for a system-level overview of
ADIC.

1.1 Terminology

We first define several terms that are used throughout this manual:
¢ Independent variables are program input variables with respect to which derivatives are desired.
o Dependent variables are program output variables whose derivatives are desired.

e A derivative object represents some derivative information, such as a vector of partial derivatives
(0z/0x, ...,0z/0x,) of some variable z with respect to a vector z.

e Any program variable with which a derivative object is associated is called an active variable. Put another
way, an inactive variable is a floating-point variable that does not have an associated derivative object, de-
termined either through analysis or user annotations. ADIC currently considers all floating-point variables
as active, unless explicitly specified otherwise by the user. We can extend this notion further for functions:
an inactive function does not perform any derivative computation, even if floating-point computations are
involved. The user can also specify inactive user-defined types. All elements of an inactive type are also
inactive; for example, if a struct that contains floating-point fields has been declared inactive, no derivative
objects would be associated with its components.

ANSI - G/ C++ Pre- Mai n Post - ANSI - & G+
Code | Processor Proocessor Processor [[= | Code with
\ Derivatives
Al F
Files

ADIC Trandator

Libraries, e.g.,

- AlF Mdul e Libraries
- SparslLinC

- ADIntrinsics

Conpi | e/
Derivative
Program

User’s
Derivative
Driver

Figure 1.1: Generating derivative code with ADIC.

1.2 Overview of the ADIC System

The ADIC system comprises various programs, scripts, headers, and libraries. The processing stages of auto-
matic differentiation using ADIC are shown in Figure 1.1. The main stages are as follows:

o A list of source files to be differentiated is collected. The list along with an optional control script is
submitted to the ADIC system.

o For flexibility, the processing of source code is divided into several stages. The sources are first fed into the
preprocessor, which deals with C preprocessor directives and macro expansions (like the C preprocessor
cpp) but also embeds information required to recreate certain original directives and macros when gener-
ating the derivative code. The results are fed into the main processor, which generates the derivative code
with the help of AIF modules. AIF modules are analogous to PC peripheral cards in the sense that they
can be “plugged” into the ADIC “motherboard”. Each module provides a certain defined functionality.
Similarly to peripheral cards, AIF modules can be field installed by users. The details of AIF modules and
their types are given in [4] and [3]. Here it is sufficient to note that AIF modules contain the core “rules”
for performing automatic differentiation. The generated code is then fed into a series of postprocessors
(in a pipelined fashion) that provide the ability to perform further textual transformations. One routinely
used postprocessor is pur se, a component of the ADIntrinsics subsystem to handle intrinsic function calls
(e.g., sgrt and cos).

e The derivative code and a driver are then compiled and linked together to produce the final program. The
ADIC system provides a set of headers and libraries required to compile and link the derivative code.

Chapter 2

Getting Started

In this chapter, we show the installation of the ADIC system and the required setup.

2.1 System Requirements

ADIC uses a standard C preprocessor to expand macros and handle preprocessor directives. The default pre-
processor is cpp available on most Unix systems. The preprocessor of the GNU gcc compiler may be specified
instead through a command-line option or a control script entry.

2.2 Installation

The ADIC system is distributed as a compressed archive file:

1. Note the machine and operating system you are using, and make sure you have the correct version of the
software. The format of the ADIC distribution archive is “adic-x.xx-machine.tar.gz”, where “x.xx” spec-
ifies the software version and machine specifies a particular machine and operating system combination,
such as Linux for Intel x86 or Solaris on Sparcs. ADIC is supported on the following platforms: Solaris
(SPARC), Linux (x86), HPUX, AIX (IBM RS6000), and IRIX. It is usually possible to compile ADIC-
generated code on architectures not listed here. The source code for the libraries required for linking is
included in the distribution.

2. Decide where to install the ADIC system. The archive file unpacks into a directory called adi c. The
following example installs ADIC underi nstal | -dir.

%cd install-dir
% gunzip -c adic-x.xx-solaris.tar.gz | tar xvf -

2.3 Directory Structure

In this section, we present an overview of the standard directory structure of the ADIC system, which is com-
mon for all platforms. The bin and lib directories contain subdirectories for each platform where architecture-
dependent files are located. The standard platform directory names are i ri x, | i nux, r s6000, hpux, sol ari s,
and wi n32.

bi n: Various executables and scripts.

bi n/ arch: Architecture-dependent programs.

i ncl ude: Header files for runtime library routines needed during the compilation of the derivative code.
I'i b: Precompiled runtime libraries and necessary files. Architecture-dependent files are in subdirectories.
|'i b/ arch: Architecture-dependent library files.

I'i b/ src/ module: The source to the runtime libraries of the corresponding module.

modul es/ module: Module-specific data are stored under the corresponding module subdirectory; only modules
that require such data have a subdirectory.

doc, doc/ module: Documentation for ADIC and some modules.
exanpl es, exanpl es/ module: Sample codes to test the system and modules.

In addition, the ADIC distribution currently contains the following AIF modules:
G adi ent : the standard Jacobian module.

Hessi an: the standard Hessian module.

2.4 Setting Up the Environment

Before running adi C, you must set the ADI C and ADI C_ARCH environment variables and update the search path
(examples below assume the use of the csh or t csh shell):

1. Set the environment variable ADI C to the base directory where ADIC is installed. For example, if ADIC
was unpacked in the /home/user directory, set the ADI C variable as follows:

setenv ADI C / hone/user/ adic

2. Set the environment variable ADI C_ARCH to one of the following:i ri x, | i nux, r s6000, hpux, sol ari s,
orwi n32, for example,

setenv ADI C ARCH sol ari s

Alternatively, set the ADI C_ARCH variable to the type returned by the $ADI C/ bi n/ adi car ch command:

set env ADI C_ARCH ‘ $ADI C/ bi n/ adi car ch'

3. Add the ADIC executables directory to the command search path. The following example adds the ADIC
executables directory as the first directory to be searched.

set env PATH $ADI C/ bi n/ $ADI C_ARCH: $PATH

2.5 Building RuntimeLibraries

Runtime libraries are distributed in compiled form for each supported platform (also referred to as a host ma-
chine). If the ADIC-generated derivative code is to be compiled for a non-host machine (hereafter referred to as
the target machine), the libraries must be compiled for that machine. The source code for essential libraries is
included in all distributions.

To compile all the runtime libraries:

1. copytheli b/ src directory to the new platform.
2. type make cl ean to clean up the old object files and config files.

3. type make to build the library. GNU automake and autoconfig are used to generate the appropriate make-
files for the given platform.

Generally, in addition to the standard runtime libraries that come with the ADIC system, each AIF module
also comes with its own set of runtime libraries. Currently, the standard ADIC libraries are

o libadic.a: This library is a container for a number of distinct libraries that may be used with the ADIC-
generated code.

¢ libADIntrinsics-C.a: The source code isintheli b/ src/ adi ntrinsi cs directory.
¢ libaif grad.a: The source code isintheli b/ src/ G adi ent directory.
o libaif_hess.a: The source code isintheli b/ src/ Hessi an directory.

As additional AIF modules are installed, their libraries must be built and installed for the desired target
machine.

Chapter 3

Running ADIC: An Example

In this chapter, we show a simple example program that we would like to differentiate through ADIC. The exam-
ple program consists of four source files: f unc_mai n. ¢, f unc. h, f unc. c, and nor n2. c. We have deliberately
tried to use various C features for illustration purposes. The source codes of this example come with the standard
ADIC distribution and can be found in the exanpl es/ Gr adi ent subdirectory.

1 #include <stdio. h>
2 #include "func. h"

3

4 int main() {

5 int i, n;

6 data_t data;

7 doubl e x[MAXLEN], y[MAXLEN], r;

8

9 /* read in val ues*/

10 scanf ("%", &n);

11 for (i =0; i <n; i++) {

12 scanf ("% f %f", &[i], &[i]);
13 }

14 data.len = n; data.x = x; data.y =vy;
15

16 /*invoke the function*/

17 cos_angl e(&dat a) ;

18

19 /*print the result*/

20 printf("%e\n", data.r);

21 1}

Figure 3.1: File f unc_nmi n. c.

The program computes the cosine of the angle between two vectors z and y. Figure 3.1 shows the main
function that reads in the length and values of the two vectors from the user, packs the data into a dat a t data
structure, calls the f unc function that actually computes the value, and finally prints the result. The header file
containing the definition of dat a_t is shown in Figure 3.2. The f unc function (shown in Figure 3.3) uses the
formula W to calculate cos 6. It calls the nor n2 function (shown in Figure 3.4) to calculate the 2-norm
of a vector.

Our goal is to generate derivative code that computes the Jacobian of the result with respect to z. The steps

are as follows:

©CoOoO~NOUR~WNPRE

#defi ne MAXLEN 100

typedef struct {
int | en;
doubl e *x, *y, r
} data_t;

voi d cos_angl e(data_t*);
doubl e norn2(int, double*)

Figure 3.2: File f unc. h.

©CoOoO~NOUWNPRE

#i ncl ude <mat h. h>
#i ncl ude "func. h"

voi d cos_angl e(data_t* pdata)

doubl e *x = pdata->x, *y =

int i

for (dotp = 0.0, i = 0;

pdat a- >y, dotp, normx, normy;

< pdata->len; i++ dotp += *x++ * *y++)

pdaté->r = dot p/ (nor n2(pdat a- >l en, pdat a- >x) *nor n2(pdat a- >l en, pdat a- >y)) ;

return;

Figure 3.3: File f unc. c.

O©CoO~NOOT A WNPRF

#i ncl ude <math. h>
doubl e nornm2(int n, double *x)

double norm= 0.0
int i

for (i=0; i<n; i++) {
norm+= x[i]*x[i];

}

norm = sqgrt(norm;

return norm

Figure 3.4: File nor n2. c.

1. Properly set the environment variables and the search path for ADIC executables as specified in Section
2.4.

2. Generate the first-order derivative code for the functions by invoking ADIC with the following options
(- v turns on the verbose mode, and - d gr adi ent specifies the Gr adi ent module):

% adi C -vd gradi ent func.c
% adi C -vd gradi ent norn2.c

or by combining the source files on the same command line (this is not recommended for large source
files):

% adi C -vd gradi ent func.c nornR.c

This generates files called f unc. ad. ¢ and nor n2. ad. ¢ shown in Figure 3.6 and 3.7. In addition, ADIC
also generates a header, ad_der i v. h (shown in Figure 3.8), which is included in the generated codes. The
generated files have been slightly reformatted for readability.

3. (OPTIONAL) Instead of, or in addition to, specifying source files at the command line, you can create a
control script called f unc. i ni t that lists the files to be differentiated (arbitrary script names can be used,
but the init extension is convenient for distinguishing ADIC control script files). We want to differentiate
the two functions f unc and nor n2. The control script is shown in Figure 3.5. The source files do not have
to be listed in the control script; they may be specified on the command line following the script name. A
control script can be specified on the command line using the - i option, for example:

% adi C -vd gradient -i func.init

[SOQURCE_FI LES]
func.c
nor n2. c

Figure 3.5: Filefunc.init.

4. Create a driver, based on the mai n function in f unc_mai n. c, that calls the derivative function. Figure 3.9
shows the driver, which sets up the independent variables, calls the derivative function, and extracts the
derivative values.

5. Compile and link all the files, making sure the path to the appropriate include directory is set and the nec-
essary libraries are linked. Also, define the ad_GRAD MAX macro which designates the maximum number
of independent variables. If this is left undefined, the maximum number of independent variables defaults
to 5. An example of compiling and linking the differentiated files and the driver follows:

% gcc -1$ADI C i ncl ude - Dad_GRAD MAX=3 -c func.ad.c nornR.ad.c func_driver.c
% gcc -0 ad_func norn2.ad.o func.ad.o func_driver.o -L$ADI T |i b/ $ADI C_ARCH
-lADIntrinsics-C -laif_grad -Im

O©CoO~NOOUAWNPRE

/*************‘k*‘k********** DI SO_AI ,\ER ********************************/

/* */
/* This file was generated on 01/08/01 15:16:12 by the version of */
/* ADI C conpiled on 12/18/00 16:11:29 */
/* */
/* ADI C was prepared as an account of work sponsored by an */
/* agency of the United States Government and the University of */

/* Chi cago. NEI THER THE AUTHOR(S), THE UNI TED STATES GOVERNMENT */
/* NOR ANY AGENCY THEREOF, NOR THE UNI VERSI TY OF CHI CAGO, | NCLUDI NG */
[* ANY OF THEI R EMPLOYEES COR OFFI CERS, MAKES ANY WARRANTY, EXPRESS */
[* OR | MPLI ED, OR ASSUMES ANY LEGAL LI ABILITY OR RESPONSI Bl LI TY FOR */
[* THE ACCURACY, COWVPLETENESS, OR USEFULNESS OF ANY | NFORMATION OR */
[* PROCESS DI SCLOSED, OR REPRESENTS THAT | TS USE WOULD NOT | NFRI NGE */
/* PRI VATELY OMNED RI GHTS. */
* *

;**//
#i ncl ude "ad_deriv.h"
#i ncl ude <math. h>
#i ncl ude "adintrinsics. h"
typedef struct {

int len;

DERI V_TYPE *Xx, *y, r;
} data_t;
voi d ad_cos_angl e(data_t *);
voi d ad_nornm2(DERI V_TYPE *ad_var_ret,int ,DERIV_TYPE *);
voi d ad_cos_angl e(data_t *pdata) {

DERI V_TYPE *x = pdata->x, *y = pdata->y, dotp, normx, normy;

int i;

int ad_var_O;

DERI V_TYPE *ad_var_1, *ad_var_2, ad_var_3, ad_var_4;

double ad_loc_0, ad_loc_1;

double ad_adj_0, ad_adj_1, ad_adj_2, ad_adj_3;

ad_grad_axpy_0(&(dotp));

DERI V_val (dotp) = 0.0;

for (i =0; i < pdata->len;) {

ad_var_0 = i ++;
ad_var_1 = x++;
ad_var_2 = y++;
ad_loc_0 = DERIV_val (*ad_var_1) * DERIV_val (*ad_var_2);

ad_loc_1 = DERIV_val (dotp) + ad_l oc_0;
ad_grad_axpy_3(&(dotp), 1.000000000000000e+00, &(dotp), DERIV_val (*ad_var_2),
& *ad_var_1), DERIV_val (*ad_var_1), &(*ad_var_2));
DERI V_val (dotp) = ad_l oc_1;
}
ad_norn2(&ad_var_3, pdata->len, pdata->x);
ad_norn2(&ad_var_4, pdata->len, pdata->y);

ad_loc_0 = DERIV_val (ad_var_3) * DERIV_val (ad_var_4);
ad_loc_1 = DERIV_val (dotp) / ad_l oc_0;

ad_adj _0 = -ad_loc_1/ ad_loc_O;

ad_adj _1 = 1. 000000000000000e+00 / ad_| oc_0O;

ad_adj _2 = DERIV_val (ad_var_3) * ad_adj _0;

ad_adj _3 = DERIV_val (ad_var_4) * ad_adj _0;
ad_grad_axpy_3(& pdata->r), ad_adj_1, &(dotp), ad_adj_3,
& ad_var_3), ad_adj_2, &(ad_var_4));
DERI V_val (pdata->r) = ad_l oc_1;
}
voi d ad_AD Init(int arg0) { ad_AD Gradlnit(arg0); }
voi d ad AD Final () { ad AD GradFinal (); }

Figure 3.6: File f unc. ad. c.

©CoOoO~NOUAWNPE

/*************‘k************ DI SO_AI ,\ER ******‘k*************************/

/* */
/* This file was generated on 01/08/ 01 15:16:37 by the version of */
/* ADI C conpiled on 12/18/00 16:11:29 */
/* */
/* ADI C was prepared as an account of work sponsored by an */
/* agency of the United States Government and the University of */

[* Chi cago. NEI THER THE AUTHOR(S), THE UNI TED STATES GOVERNVMENT */
/* NOR ANY AGENCY THEREOF, NOR THE UNI VERSI TY OF CHI CAGO, | NCLUDI NG */
[* ANY OF THEI R EMPLOYEES OR OFFI CERS, MAKES ANY WARRANTY, EXPRESS */
/* OR | MPLI ED, OR ASSUMES ANY LEGAL LI ABILITY OR RESPONSI Bl LI TY FOR */
[* THE ACCURACY, COWVPLETENESS, OR USEFULNESS OF ANY | NFORMATION OR */
[* PROCESS DI SCLOSED, OR REPRESENTS THAT | TS USE WOULD NOT | NFRI NGE */
/* PRI VATELY OMNED RI GHTS. */
* *

;**//
#i ncl ude "ad_deriv.h"
#i ncl ude <math. h>
#i ncl ude "adintrinsics. h"
void ad_norn2(DERI V_TYPE *ad_var_ret,int n,DERIV_TYPE *x) {

DERI V_TYPE norm

int i;

int ad_var_O;

double ad_adji_0O, ad_loc_0O, ad_loc_1;

static int g_filenum= 0;
if (g_filenum== 0) {

adintr_ehsfid(&g_filenum _ _FILE , "ad_norm");
}

ad_grad_axpy_0(& norm);
DERI V_val (norm) = 0.0;
for (i = 0; i <n; {
ad_loc_0 = DERI V_val (x[i]) * DERIV_val (x[i]);
ad_loc_1 = DERIV_val (norm) + ad_|l oc_0;
ad_grad_axpy_3(& nornj, 1.000000000000000e+00, &(norm,
DERI V_val (x[i]), & x[i]), DERIV_val (x[i]), & x[i]));
DERI V_val (norm) = ad_l oc_1;
ad_var_0 = i ++;

DERI V_val (norm) = sqgrt(DERIV_val (norm); /*sqrt*/
if (DERIV_val (norm) > 0.0) {

ad_adji_0 =1.0/ (2.0 * DERIV_val (nornm);
}

el se {
adintr_sqrt(1, g_filenum __LINE , & ad_adji_0);

}

ad_grad_axpy_1(&norn), ad_adji_0, & norm);
ad_grad_axpy_copy(& *ad_var_ret), & norn));
DERI V_val (*ad_var _ret) = DERI V_val (norm;
return;

Figure 3.7: File nor n2. ad. c.

10

3.1 A Closer Look at the Preparation

Specifying source files. We do not process the driver f unc_mai n. ¢ through ADIC since it does not contain
any code that needs to be differentiated. We also do not separately process f unc. h since the header will be
indirectly processed through f unc. ¢, which includes it: ADIC inlines the differentiated header in the generated
code*.

Writing a control script. A control script is a text file optionally used to fine-tune the behavior of ADIC.
It contains a set of bindings (key-value pairs) organized into sections. For example, the list of functions or
variables that should be made inactive can be specified in the script. Control scripts can be nested. See Chapter 7
for further details and a description of all valid bindings.

Selecting a derivative AIF module. There are many different ways of computing and propagating derivatives
through exploiting the chain rule associativity. These differentiation “rules” are embodied in AIF modules.
ADIC makes use of one or more of these modules for generating the derivative code. The user must select a
module when invoking ADIC. The current distribution includes the G adi ent and Hessi an modules, which
compute the first and second derivatives, respectively.

3.2 A Closer Look at the Generated Code

ADIC makes the following changes in the course of generating the code that compute the derivatives. See Chap-
ter 8 for further details on compiling ADIC-generated derivative code.

Generated Files. For each source file name with suffix . x (e.g., f oo. ¢), ADIC generates a corresponding
derivative source file with the suffix . ad. x (e.g., f oo. ad. ¢). ADIC also generates a header file, ad_deri v. h
(or rather, <pr ef i x>der i v. h, where <pr ef i x> can be specified in the control script, see Chapter 7; the default
is ad_), automatically included by all the generated source files. The header contains appropriate ADIC type
declarations and prototypes. Different header files are generated depending on the derivative module chosen
and also the options selected when ADIC is invoked. A command line option can disable the generation of the
header. To see a summary of all command line options, run ADIC with no arguments.

Type change. ADIC changes the type of doubl e or f | oat variables into DERI V.. TYPE defined inad_deri v. h
shown in Figure 3.8. In this case, DERI V_TYPE is defined as a structure containing a floating-point value and
an array of floating-point values, corresponding to the Jacobian of the variable with respect to the independent
variables. The actual definition of the type depends on how ADIC is invoked. The type change results in the
change of any data structure containing an (active) floating-point variable. It is possible to disable certain types
from being changed. This can be done either in a control script (see Chapter 7 or by changing the type name
in the source file from float or double to InactiveFloat or InactiveDouble, respectively. This is useful when we
know variables of those types are inactive and thus need not have any associated derivative objects.

Function name change. At times, derivative code must coexist with the original functions. This is especially
the case in libraries containing both the original and differentiated versions. In order to reduce name conflicts

*There is an option that specifies that header files should not be inlined, in which case those header files must be processed through ADIC
separately.

11

O©CoOoO~NOOThWNPRE

/*************‘k************ DI SO_AI ,\ER ******‘k*************************/

/* */
/* This file was generated on 01/09/01 11:16:01 by the version of */
/* ADI C conpiled on 12/18/00 16:11:29 */
/* */
/* ADI C was prepared as an account of work sponsored by an */
/* agency of the United States Government and the University of */

/* Chicago. NEITHER THE AUTHOR(S), THE UNI TED STATES GOVERNMENT */
/* NOR ANY AGENCY THEREOF, NOR THE UNI VERSI TY OF CHI CAGO, | NCLUDI NG */
/* ANY OF THEI R EMPLOYEES OR OFFI CERS, MAKES ANY WARRANTY, EXPRESS */
/* ORIMPLIED, OR ASSUMES ANY LEGAL LI ABILITY OR RESPONSI BI LI TY FOR */
/* THE ACCURACY, COVPLETENESS, OR USEFULNESS OF ANY | NFORVATION OR */
/* PROCESS DI SCLOSED, OR REPRESENTS THAT | TS USE WOULD NOT | NFRI NGE */
/* PRIVATELY OANED RI GHTS. */
* *
;***‘k****************************//
#if 1defined(AD_DERIV_H)
#define AD DERIV_H

typedef doubl e | nacti veDoubl e;
typedef float |nactiveFl oat;

#i f !defined(ad_GRAD _PTR)
#define ad_GRAD_PTR 0

#endi f

#i f !defi ned(ad_GRAD_MAX)
#define ad_GRAD_MAX 5

#endi f

#define AD_I NI T_MAP()

#def i ne AD_CLEANUP_NMAP()
#define AD_GET_DERI V_OBJ(x) ((void*) (&x.val ue+l))
#def i ne AD_FREE_DERI V_OBJ(x)
typedef struct {

doubl e val ue;

doubl e grad[ad_GRAD_MAX] ;

} DERI V_TYPE;

#define DERI V_val (a) ((a).value)
#define DERI V_grad(a) ((a).grad)
#define _FLOAT_INITIALIZER (x) { x, 0.0 }

void ad_AD Init(int);
void ad_AD Final ();

#i ncl ude "ad_grad. h"
#define null Func(x) O
#endi f

Figure 3.8: File ad_deri v. h.

12

©CoOoO~NOUAWNPRE

#i ncl ude "ad_deriv.h"
#i ncl ude <stdi o. h>

#def i ne MAXLEN 100
typedef struct {
int | en;
DERI V_TYPE* x, *y, r;
} data_t;
voi d ad_cos_angl e(data_t*);

int min() {
int i, n;
doubl e grad[ad_GRAD MAX], t1, t2;
data_t data;
DERI V_TYPE x[MAXLEN], y[MAXLEN], r;

/*inialize*/
ad_AD | ni t (ad_GRAD_MAX) ;

/* read in val ues*/

scanf ("%", &n);

for (i =0; i <n; i++) {
scanf ("% f %f", &1, & 2);
ad_grad_axpy_O(DERI V_grad(x[i]));
DERI V_val (x[i]) = t1;
ad_grad_axpy_O(DERI V_grad(y[i]));
DERI V_val (y[i]) = t2;

}

data.len = n; data.x = x; data.y =vy;

/*set independent variabl es*/
ad_AD Set | ndepArray(x, n);
ad_AD_Set | ndepDone() ;

/*invoke the function*/
ad_cos_angl e(&dat a) ;

/*extract the gradient vector*/
ad_AD ExtractGrad(grad, data.r);

/*print the result and partial s*/
printf("%e\n", DERIV_val (data.r));
for (i =0; i <n; i++) {

printf ("%e\n", grad[i]); [*partial s*/

[*cl eanup*/
ad_AD Final ();
}

Figure 3.9: File func_dri ver.c.

13

with the original source, ADIC prepends each function name in the source with a prefix. The default prefix is
ad_, but a different prefix may be specified in a control script. See Chapter 10 for details.

Function type change. ADIC takes each function definition and augments it with derivative computations.
As part of this process, if the original function returns a floating-point value, then the function is turned into a
procedure (e.g., a function that doesn’t return a value) that returns the result through the first argument. All calls
to the function are suitably modified. The nor n2 function shows this process. This modification does not occur
for overloaded operators in C++.

Intrinsic function calls. The ad_nor n2 function shown in Figure 3.7 contains some extra code in handling the
sqrt intrinsic call. Functions such as sqrt are not continuously differentiable (e.g., sqrt (x) when x equals
zero). To alert the user to such an occurrence, ADIC can check for it and print a warning message. In other
cases, the user may want to skip these checks to improve the performance of derivative computations.

To support checking and reporting of potential exceptions, ADIC includes the header adi ntrinsics. h
whenever mat h. h is included in the source. ADIC also provides a reasonable default value for the derivatives
so that the execution can proceed. In fact, in most cases, the evaluation of an intrinsic at a point of nondifferen-
tiability does not compromise the overall result.

Generated special functions. ADIC generates two special functions, ad_AD.I nit and ad_ADFi nal , that
should be called from the driver. These functions are defined in the first generated source file (for the example,
in func. ad. ¢ file). The user can prevent ADIC from generating these functions by using a command line
option. The ad_AD.I ni t function performs initializations necessary before any other differentiation steps. In
the example above, the ad_AD.I ni t function makes a single call to ad_AD .G adl ni t which is defined in the
G adi ent module library. The ad_AD Fi nal function performs any cleanup that may be necessary.

3.3 A Closer Look at the Driver

The driver sets up independent variables, calls the derivative functions, and extracts the derivative values. Inde-
pendent variables can be nominated at runtime, rather than at translation time. Thus there is no need to rerun
ADIC if the set of independent variables changes. This strategy facilitates the construction of differentiated
libraries in which one cannot know in advance which of the inputs will be elected as independents.

The func_dri ver. c file shownin Figure 3.9 contains the calls to various ADIC functions. The independent
variables are specified through a series of calls to ad_AD_Set | ndepAr r ay and ad. AD Set | ndep, and terminated
by the call to ad_AD_Set | ndepDone. The call

ad_AD Set | ndepArray(x, n);

specifies that n consecutive elements of the array x are independent variables. The call
ad_AD ExtractGrad(grad, r);

extracts the Jacobian of the result r into the array gr ad. The call
ad_AD ExtractVal (val, r);

extracts the result itself into the floating-point variable val .
Except for the variables gr ad and val , all the other floating-point variables are of type DERI V_TYPE. Man-
ually writing drivers can be tedious and error prone. For example, we had to make sure that MAXLEN defined on

14

line 4 of Figure 3.9 was the same as defined in f unc. h. We can use ADIC to ease the task of writing this driver.
First, we rewrite f unc_mai n. ¢ to include the necessary calls as shown in Figure 3.10. Note that we declared
grad array as | nact i veDoubl e to make it inactive (I nacti veDoubl e is defined internally by ADIC as an
inactive type). The result of running it through ADIC is shown in Figure 3.11. This code can be then directly
compiled and linked.

1 #include <stdio.h>
2 #include "func. h"
3
4 int main() {
5 int i, n;
6 data_t data;
7 I nacti veDoubl e grad][MAXLEN], t1, t2, val;
8 doubl e x[MAXLEN], y[MAXLEN], r;
9
10 #if defined(AD O
11 AD | ni t (ad_GRAD_MAX) ;
12 #endif
13
14 /* read in val ues*/
15 scanf ("%", &n);
16 for (i =0; i <n; i++) {
17 scanf ("% f %f", &1, & 2);
18 x[i]l=11;
19 yli] =1t2;
20 }
21 data.len = n; data.x = x; data.y =y;
22
23 #if defined(AD O
24 AD_Set | ndepArray(x, n);
25 AD_Set | ndepDone() ;
26 #endif
27
28 /*invoke the function*/
29 cos_angl e(&dat a) ;
30
31 ¢#if defined(AD C
32 AD Extract Grad(grad, data.r);
33 AD ExtractVal (val, data.r);
34 #endif
35
36 /*print the result*/
37 printf("%e\n", val);
38 #if defined(AD C
39 for (i =0; i <n; i++) {
40 printf ("%e\n", grad[i]); [*partial s*/
41 }
42 AD _Final ();
43 #endif
44 3

Figure 3.10: File f unc_mai n2. c.

15

O©CoO~NOOUAWNPRE

/*************‘k************ DI SO_AI ,\ER ******‘k*************************/

/* */
/* This file was generated on 01/08/ 01 16:05:16 by the version of */
/* ADI C conpiled on 12/18/00 16:11:29 */
/* */
/* ADI C was prepared as an account of work sponsored by an */
/* agency of the United States Government and the University of */

/* Chi cago. NEI THER THE AUTHOR(S), THE UNI TED STATES GOVERNMENT */
/* NOR ANY AGENCY THEREOF, NOR THE UNI VERSI TY OF CHI CAGO, | NCLUDI NG */
[* ANY OF THEI R EMPLOYEES COR OFFI CERS, MAKES ANY WARRANTY, EXPRESS */
[* OR | MPLI ED, OR ASSUMES ANY LEGAL LI ABILITY OR RESPONSI Bl LI TY FOR */
[* THE ACCURACY, COWVPLETENESS, OR USEFULNESS OF ANY | NFORMATION OR */
[* PROCESS DI SCLOSED, OR REPRESENTS THAT | TS USE WOULD NOT | NFRI NGE */
/* PRI VATELY OMNED RI GHTS. */
* *
;**//
#i ncl ude "ad_deriv.h"
#i ncl ude <stdio. h>
typedef struct {
int len;
DERI V_TYPE *Xx, *y, r;
} data_t;
voi d ad_cos_angl e(data_t *);
voi d ad_nornm2(DERI V_TYPE *ad_var_ret,int ,DERIV_TYPE *);
int min() {
int i, n
data_t data;
I nacti veDoubl e grad[100], t1, t2, val;
DERI V_TYPE x[100], y[100], r;
int ad_var_0, ad_var_1;
ad_AD | ni t (ad_GRAD_MAX) ;
scanf ("%l", &n);
for (i = 0; i <n;) {
scanf ("% f %f", &1, &2);
ad_grad_axpy_O0(&(x[i]));
DERI V_val (x[i]) = t1;
ad_grad_axpy_O(&(y[i]));
DERI V_val (y[i]) = t2;
ad_var_0 = i ++;

data.len = n;

data.x = Xx;

data.y =vy;

ad_AD Set | ndepArray(x, n);
ad_AD_Set | ndepDone() ;
ad_cos_angl e(&data);

ad_AD ExtractGrad(grad, data.r);
ad_AD ExtractVal (val, data.r);
val = DERIV_val (data.r);
printf("%e\n", val);

for (i = 0; i<n) {
printf("%e\n", grad[i]);
ad_var_1 =i ++;

}

ad_AD Final ();
}
voi d ad_AD Init(int arg0) { ad_AD Gadlnit(arg0); }
voi d ad AD Final () { ad AD GradFinal (); }

Figure 3.11: File f unc_nwi n2. ad. c.

Chapter 4

Using ADIC

4.1 Preparingthe Source

In this chapter we describe the invocation semantics of ADIC.

Working with pre-ANSI C. ADIC expects ANSI-C source. If the user program uses the old K&R style
function declarations, it should be first run through GNU protoize to convert to using ANSI-C style declarations
and generate proper function prototypes.

% protoize filel file2 ...

Working with C++. ADIC can also handle some C++ source. However, the coverage of the C++ language
is not complete at this point. A command-line option must be specified when processing C++ source. For a
summary of all command line options, run ADIC with no arguments.

Working with multiple source files. Multiple source files can be specified with ADIC. Since ADIC currently
does not perform any interprocedural analysis, it makes a little difference whether the source files are specified
all at once or one per invocation. It is recommended, however, that each nontrivial source file is processed
separately.

Working with header files. The system headers (included using #i ncl ude directives with the filename en-
closed in angle brackets) mostly deal with the noncomputational system functions and therefore do not need to
be differentiated. ADIC assumes that all functions and global variables declared inside system headers are inac-
tive, which means that any user code referencing them is processed accordingly. The sole exception is mat h. h,
which declares intrinsic numeric functions. The declarations in user headers (included using #i ncl ude direc-
tives with the filename enclosed in quotes) are not made inactive by default (although the user can explicitly
make them inactive through a control script). It is important that all system header #i ncl ude directives use
angle brackets to prevent incorrect code generation or inability to process the source file.

In addition, ADIC by default inlines user headers in the source that includes them. By using the - u
command line option, user headers will not get inlined but instead the generated source will contain #i ncl ude
directives for the differentiated user headers. If this option is used, the header file must be processed separately
by ADIC. See Chapter 9 for further details.

For the example in Chapter 3, if we use the command

17

% adi C -uv -d gradient -i func.init

and add the f unc. h entry to the f unc. i ni t, we get the following f unc. ad. ¢ (the body of the function is
omitted since it is unchanged from the previous version):

#i ncl ude "ad_deriv.h"
#i ncl ude <math. h>
#i nclude "adintrinsics.h"
#i ncl ude "func. ad. h"
voi d ad_cos_angl e(data_t *pdata) {
}
The differentiated header, f unc. ad. h, contains

typedef struct ({

int I en;
DERI V_TYPE *x, *y, r
} data_t;

voi d ad_cos_angl e(data_t*)
voi d ad_norn2(DERI V_TYPE*, int, DERI V_TYPE")

Selecting different prefixes. In order to reduce name conflicts with the original source code, ADIC can
prepend each type, function, and variable name in the with a prefix. Different prefixes may be specified for
different name types. For example, we can specify one prefix for all the function names and another for all the
type names. The prefixes are specified in the control script. See Chapter 10 for details.

Incorporating domain knowledge. The user may know that certain functions do not need to be augmented
with derivatives (for example, debugging functions). When these function names are specified in the control
script, ADIC will not augment them with derivatives. If a function is inactive, then all arguments are made
inactive. ADIC ensures that any call to the function with active arguments are properly handled; that is, only the
value part of an active variable is passed, rather than the entire DERI V_TYPE.

Checking. If a source contains a call to an intrinsic function such as si n, ensure that mat h. h is included using
angle brackets. Just declaring the proper prototype of the intrinsic function by itself is not enough.

4.2 Invoking ADIC

Invoking ADIC to generate derivative code is quite simple. The basic format is:

% adi C -OPTIONS [filel ...]

When no option or invalid options are specified, the usage information will be printed. The command-line
options are as follows:

-d module_name The user can specify the derivative AIF module that determines the type of derivatives that
will be generated. If this option is not specified, then ADIC will print out the available modules.

-v This turns on the verbose mode and details various phases of ADIC processing.

18

-a Instead of using cpp preprocessor, the user can instruct ADIC to use the GNU gcc preprocessor with this
flag.

-t This specifies that the special initialization and finalization functions should not be created. This option
generally is used when a number of files that will be linked together are being differentiated and only one
of them needs to contain the special function definitions.

-C If the user has a C++ program, this option should be specified.
-i control _file This specifies a control script named cont rol _fil e.

-1 include_dir This specifies a directory to be searched to find i ncl ude files. This directory is searched before
the standard directories. Multiple -1 options are allowed.

-k This directs ADIC to regenerate inactive function definitions completely.

-D This specifies a macro definition that will be passed down to the C preprocessor. For example, the user can
use this to select the proper conditional directives. Multiple -D options are allowed. The macros may also
be specified in the control file (under the DEFI NES section).

-h This specifies that the special header file ad_deri v. h should not be created.
-g This directs ADIC to use guards around unmodified global declarations.
-s This specifies the silent operation. It will not print any messages, unless there is an error or a warning.

-u This specifies that user header files should not be expanded inline. In this case, the user should make sure the
header files are processed through ADIC.

While processing, ADIC generates various working files, which will automatically be deleted unless errors
are encountered.”

* After errors are fixed and ADIC runs successfully, the working files will be deleted.

19

Chapter 5

The Gradient Module

The G adi ent module can be used to compute the Jacobian J of m dependent variables with respect to n
independent variables. The cost of the computation is on the order of n times the function evaluation. By
appropriately initializing the gradient objects of the independent variables (seed matrix M), we can actually
compute the product J x M at the cost of computing m columns of M. Hence, we can directly compute m
directional derivatives.

The default G adi ent module defines one derivative object called gr ad associated with each active variable.
grad is an array of float values. The array size is fixed at compile time and is equal to the ad_GRAD.MAX
macro value. The user must define this macro at compile time. The derivative object of = is referenced by
DERI V_gr ad(z) .

The following set of bindings is available (specified in the control script). See Chapter 7 for details of the
control script format.

GRAD_INLINE = {no,yes} The accumulation loop may be either inlined or performed through a function call.

GRAD_MAX =0..n This value specifies the default maximum size of the gradient object. This value can be
overridden during the compilation stage.

GRAD_CALL_PARAMS = {full lite} This binding is not used currently.

GRAD_MAX_ARITY =0..n The runtime library that comes with the Gr adi ent module for handling partial
derivative accumulation has an optimized version for each number of unique variables on the right-hand
side, up to n. Beyond that, a general-purpose routine performs the accumulation. The user should not
change this setting in general.

GRAD_NO_OPTIMIZE = {0,1} Except for debugging purposes, this value should always be 0.
In order to compute the Jacobian, the following calls may be used:

ad_AD_Setlndep(var) This call increases the number of independent variables by one. It sets the variable var
to be the ith independent variable. var may be either local or global. It also initializes the derivative
object associated with this variable (e.g., sets the ith entry of the derivative object to 1.0 and the rest to
0.0). The order of calls to this function mirrors the order of Jacobian values in derivative objects.

ad_AD_SetlndepArray(var, n) This call is used to set an array of n active variables to be independent variables.
Starting from the first element of the array, each succeeding element is initialized as the next independent

20

variable (e.g., the derivative objects are initialized correctly). The number of independent variables is thus
increased by n.

ad_AD_SetlndepDone() This call signifies that all independent variables have been specified.

ad_AD_ResetIndep() This call can be called to set a new set of independent variables.

ad_AD_ExtractGrad(grad, var) This call extracts the whole Jacobian from var and copies to gr ad. gr ad is

an array of inactive floating-point variables.

In the following example, we compute the first derivative of variable r with respect to x, y, and z.

#i ncl ude "ad_deriv.h"

voi d main()

{

I nacti veDoubl e grad[ad_CRAD_MAX] ;
DERI V_TYPE x, vy, z, r;

ad_AD | ni t (ad_GRAD_MAX) ;

set values of x, y, z;

ad_AD_Set | ndep(x); /*variable x is the independent variable 1*/
ad_AD_Set | ndep(y); /*variable y is the independent variable 2*/
ad_AD_Set | ndep(z); /*variable z is the independent variable 3*/
ad_AD_Set | ndepDone() ; /*done setting independent vari abl es*/
ad_function(&, x, y, z); /*invoke the derivative function*/

ad_AD ExtractGrad(grad, r); /*extract the Jacobian into grad*/

print(grad); /*grad[0] is dr/dx, grad[1] is dr/dy,
grad[2] is dr/dz; print is a user-defined
routine */

ad_AD Final ();

5.1 Computation of .J x M

To support the initialization of the seed matrix, the following routines are provided:

ad_AD_ClearGrad(var) All elements of the derivative object of var variable are set to zero.

ad_AD_SetGrad(grad, var) This call is the complement of ad_AD_Ext r act Gr ad: it initializes the gradient of

var with grad. grad is an array of inactive floating-point variables.

To initialize the seed matrix A with m columns, the following steps can be used (we assume n > m, where

n is the number of independent variables):

1. Call ad_AD Set | ndep for any set of m independent variables.

2. Use the above routines (i.e., ad_AD_ClearGrad, ad_AD_SetGrad) to reset the gradient of independent
variables to the desired values. Each row of M corresponds to a particular gradient of an independent
variable.

21

In the following example, we compute Jacobian*Vector (J x v, where .J is a vector and v is a column vector)
resulting in a scalar value.

#i ncl ude "ad_deriv.h"

voi d main()

{
I nacti veDoubl e grad[ad_CGRAD_MAX] ;
DERIV_TYPE x, vy, z, r
ad_AD | ni t (ad_GRAD_MAX) ;
/* ... set values of x, vy, z; ... */
ad_AD_Set | ndep(x); /* sel ect any independent variabl e*/
ad_AD_Set | ndepDone() ; /* done setting independent variabl es*/
/* set seed matrix (a vector with all ones)*/
grad[0] = 1.0;
ad_AD Set Gad(grad, Xx); /* set row 1*/
ad_AD Set Gad(grad, y); /* set row 2*/
ad_AD Set Gad(grad, z); /* set row 3*/
ad_function(&, x, y, z); /* invoke the derivative function*/
/* extract the Jacobian (really just a value) into grad*/
ad_AD ExtractGrad(grad, r);
/[* ... print grad[0]; ...*/ [* print J*V*/
ad_AD Final ();
}

22

Chapter 6

| ntrinsic Functions

Two intrinsic functions, max and mi n, usually are defined as macros. They are not defined in mat h. h. In order
for ADIC to treat them as intrinsic functions, the user must provide prototypes for them. The following code
may be inserted in the code to be differentiated:

#undef max /*remove possible macro definitions*/
#undef nin

doubl e max(doubl e, doubl e) ;

doubl e m n(doubl e, doubl e);

Since m n/ max can be used for nonfloats, instead of overloading these functions, f mi n/ f max may be used
instead. Again, the user must provide the proper prototypes for them:

doubl e fnmax(doubl e, doubl e);
doubl e fm n(doubl e, doubl e);

Important: The #i ncl ude directive should be <math.h> rather than ”math.h”. If the code to be differen-
tiated has been generated with f 2¢ or a similar tool, the incorrect include directive may be generated and would
need to be fixed manually before applying ADIC.

23

Chapter 7

Using Control Scripts

Control scripts are text files structured as a series of sections. Each section is headed by a section name enclosed
in brackets, followed by a set of control lines called bindings. A binding represents a particular attribute that we
wish to control and consists of a key and a value. A section is ended by a blank line, the beginning of another
section, or the end of the file. Control scripts can include other control scripts.

ADIC defines a set of predefined sections and bindings. In addition, each module contributes its own set of
bindings under a section name equivalent to the module name. Refer to each module’s manual for the description
of its bindings.

The standard ADIC distribution contains a control script named adi c. i ni t. This system script is always
read first during ADIC processing.

In the addition to the global script adic.init, an architecture-specific control script for each platform is
provided. The naming convention is adi c. i ni t . arch, where arch is the appropriate platform name (e.g.,
adic.init.solaris for the Solaris distribution). Most commonly, the architecture-specific control files are used
for specifying preprocessor bindings and the location of the perl executable. Some system-specific macros can
also be listed in the [UNEXPANDED_MACRCS] section (see Chapter 9 for more details).

Any user-specified control scripts are processed next. The bindings specified in the user-specified control
scripts override the same bindings in the adic.init script and the appropriate architecture-specific script.

The general format of script files is

[sectionl]
keyl [= val ue]
key2 [= val ue]

[section2]
keyl [= val ue]
key2 [= val ue]

On any line, comments begin right after the semicolon and are thus ignored. A good way to temporarily disable
a particular binding is to put the semicolon in front of it.

The value portion of bindings should be enclosed in double quotes like the C strings if it contains special
characters such as spaces and semicolons. Double quotes in the value string should be prefixed by the backslash
character. Examples:

24

key = hello
key = "may be"
key2 = "val ue contains \"quotes\" and semi col ons;

The same section may appear multiple times. All the bindings from the same section will be collected
together. If the same binding key are repeated, the later binding will override the earlier ones.

In the rest of this chapter, we describe each control script section. The valid range of numeric binding values
is indicated by [begin..end]. Some binding values may only take on one of several predefined values. The result
is unpredictable if the value is not one of the predefined values.

7.1 [GENERAL]

This control file section contains a grab-bag collection of bindings that affect the overall operation of ADIC.

include = string When this binding is encountered, the processing of the current script file is suspended and the
script file specified by the binding value is processed. There may be multiple such includes.

prefix = string ADIC prepends each function name with a prefix. This prefix is also used in generating most
internal variable names. The default prefix is ad_. The user may override the default with this binding. If
the user specifies the prefix binding without the value, then no prefix is prepended. In the case of C++,
the member functions of a class do not get changed (this is unnecessary because the class name can be
changed; see below).

var_prefix = string By default, ADIC does not change variable names. In that case the original function and
the derivative-enhanced version cannot be used within the same scope, since ADIC changes the type of
active variables, thus causing type conflicts. To avoid this, the user may define a var_prefix binding, which
would be used to prepend all variable names in the differentiated code.

type_prefix = string Type names such as a t ypedef name, struct/union tag names, and C++ class name may
be prepended with a prefix. For C++, in order to distinguish between the original class and the ADIC-
processed class, the user should specify this binding. The default is no prefix, which in some cases may
cause type conflicts (see explanation for var_prefix).

aif_version = 10..n ADIC implements the AIF interface used by plug-in modules. As AIF evolves, they are
assigned different version numbers. ADIC notifies the module the latest AIF version that it can support.
However, if this binding is present, it will override this internal value. This line is used for testing different
versions of plug-in modules. Normally, the user would not need to modify this binding.

order =0..n Each derivative module has a default derivative order. In many cases, each module may sup-
port only a single order. For example, the Gr adi ent module supports only first-order derivatives. The
Hessi an module supports first- and second-order derivatives defaulting to second order. The user may
override the default value with this binding. Other derivative modules may generate different order deriva-
tives.

include_dir = string The binding value specifies a list of directories to be searched for included files. The
directories are separated by either colons or commas. These directories are searched before the standard
directories.

25

7.2 [MODULES]

This control file section contains the specification of all the available plug-in modules. This section is listed in
the system script file. The user normally does not need to deal with this section except when manually installing
plug-ins. Each binding has the following format:

name = type,order,filepath

The name identifies a particular module and hence must be unique. In particular, this name is used to specify
a particular module in the ADIC command line. Modules also may be embedded into ADIC. Make certain that
the names of internal modules do not conflict with external module names. To see the list of both embedded and
external module names, invoke ADIC without any argument. The type field specifies the type of modules. The
derivative module has the value deriv; there may be different types of modules. The order specifies the default
derivative order for the module. The user should not normally change this value. The filepath tells the file path
of the module. The directory part of the path may be either relative to the ADIC directory or an absolute path in
which case it must begin witha ’/’.

Example:

[MODULES]
Gradient = deriv, 1, bin/solaris/gradient
Hessi an = deriv, 2,/ hone/ ne/ Hessi an/ hessi an

The install process for a new plug-in usually sets the correct binding automatically in the system control
script.

7.3 [1 NACTI VE_FUNCTI ONS]

ADIC normally considers all functions to be active. The user can specify certain functions to be inactive (i.e.,
no derivative computations are to be performed nor any data structure be changed) by listing the function names
in this section. This will also prevent the name change. Normally, when an inactive function definition is
encountered, ADIC will not recreate the body (since it is already defined in the original source which presumably
will be linked together), but rather only the prototype is generated at the point of the definition. However, this
is not sufficient for static functions as the original static function will not be visible to the generated derivative
source and hence the compiler will produce an error. As another option, the user can specify that the original
definition be recreated.

ADIC normally considers functions declared within system headers to be inactive (this however can be
overridden).

Example:

[1 NACTI VE_FUNCTI ONS]
creat
open
cl ose
wite
printf

The default system control script includes a number of these function names (such as cr eat). Although
most of these functions are standard library functions, many programs do not contain the proper headers that
declare them. Therefore, ADIC considers them to be regular functions and will change the function names. To
prevent this, we have listed common library functions in the system script.

26

7.4 [NOPREFI X_FUNCTI ONS]

In some cases, the user may wish to prevent certain function names, whether active or not, from being prefixed,
for example:

[NO_PREFI X_FUNCTI ONS]
mai n

The default system control script includes one function, namely mai n, which does not get prefixed (the
function itself may be active).

7.5 [ACTI VE_FUNCTI ONS]

It may be useful in some cases to notify ADIC to treat certain functions as if they were active. As an example,

the user may have defined its own at of function that should be treated as a normal function by ADIC. The list

in the example below overrides the | NACTI VE_FUNCTI ONS list and any functions declared in system headers.
Example:

[ACTI VE_FUNCTI ONS]
at of

7.6 [1 NACTI VE.VARI ABLES]

ADIC normally considers all floating-point variables to be active. The user can specify, however, that certain
global variables are to be made inactive by listing their names in this section. This will also prevent any name
change.

Example:

[I NACTI VE_VARI ABLES]
varl
var 2

7.7 [1 NACTI VE_TYPES]

A type is considered active if it is equivalent to a floating-point type (e.g., defined with a t ypedef from a
floating-point type) or contains a subtype that is active (e.g., a structure containing a float type). The user can,
however, explicitly specify certain type names as inactive by listing them under this section. Inactive types do
not get modified. Variables of an inactive type are considered inactive. All the components of a compound
inactive type (e.g., a struct) are also considered inactive.

Example:

[| NACTI VE_TYPES]

mydoubl e
mySt ruct Type

ADIC predefines two inactive types, | nact i veDoubl e and | nact i veFl oat , that are t ypedef ed to dou-
bl e and f | oat, respectively. They may be used to declare inactive variables in user code.

27

7.8 [I NTRI NSI C.CONTROL]

The entries in this control file section controls the behavior of intrinsic function handling.

reporting = verbose,reportonce,counting,terse,performance When an floating-point exception occurs dur-
ing derivative computation of an intrinsic function, this binding specifies how the exception should be
reported. The per f or mance mode turns off checking for many of the possible exception conditions and
performs a default action (e.g., reportonce).

7.9 [1 NTRI NSI CFUNCTI ONS]

The names of supported intrinsic functions are listed under this section. The default system script contains a
standard set of intrinsic functions that it currently supports. Normally, nothing here should be changed, unless
the user has added support for new intrinsics.

Example:

[I NTRI NSI C_FUNCTI ONS]

| og
sqrt
cos
sin

7.10 [DEFI NES]

In order to process source files, all C macros must be properly defined. C macro definitions can be listed either
under this section or on the command-line with the - D flag. The generated code does not contain any macros
other than those that are explicitly specified (see the next section).

Example:

[DEFI NES]
DEBUG
MAX_SI ZE = 20

7.11 [UNEXPANDED_MACRCS]

In order to prevent certain macros from being expanded by the preprocessor, their names may be added under
this section. See Chapter 9 for further details and the motivation behind this option.
Example:

[UNEXPANDED_MACROS]

putc
getc

7.12 [SOURCE.FI LES]

The set of source files to be processed can be listed either under this section or on the command line. The first
source is considered the “master” file and will contain the definitions of special functions (e.g, ad _AD_I ni t ()).
Example:

28

[SOURCE_FI LES]
sourcel.c
source2.c
header 1. h

7.13 [STANDARD_| NCLUDES]

Certain user header files have properties similar to those of system header files. Examples are common non-
numeric library headers, such as npi . h. The user can notify ADIC to treat certain header files as system header
files by listing them under this section.

Example:

[STANDARD_| NCLUDES]
mpi . h

7.14 [NO.I NLI NE_I NCLUDES]

If the inlining of user headers option is chosen (this is the default), then all user headers are inlined. To prevent
certain headers from being inlined, the user can list them under this section.
Example:

[NO_I NLI NE_I NCLUDES]
portable.h

7.15 Derivative Modules

Each module can have a section that has the same name as the module name under which it defines its own set
of bindings. If a module defines any bindings, its manual specifies the valid values of these bindings.

29

Chapter 8

Building ADIC-Generated Derivative
Code

In order to integrate the derivative code into a larger system or to turn it into a standalone program, an appropriate
driver must be written.

All floating-point variables are converted into the DERI V_TYPE unless they have been listed as inactive in a
control script or have been declared as | nact i veDoubl e or I nact i veFl oat . Ingeneral, the DERI V TYPE will
be a structure type. The “value” of an active variable x is referenced by DERI V_val (=) . Each derivative module
defines one or more named derivative objects associated with each active variable. A particular derivative object
of an active variable z is accessed by DERI V_nane(=) where name specifies the name of the particular derivative
object.

A typical process in writing the driver involves the following:

1.

Declare all input floating-point variables to be referenced by the derivative function (either as parameters
or as globals) as type DERI V_TYPE.

To initialize a variable x to value 2.0, use

DERI V_val (x) = 2.0;

Call the initialization function generated by ADIC, typically called ad AD1 ni t () (the actual name de-
pends on the prefix string).

Specify independent variables, and initialize them. The exact procedure depends on the particular deriva-
tive module to be used.

Invoke the derivative function(s).
Extract the derivative values. The exact procedure also depends on the particular derivative module chosen.

Call the finalization function generated by ADIC, typically called ad AD_Fi nal () (the actual name de-
pends on the prefix string).

In the following example, we compile and link two files, f unc. ad. ¢ and dri ver.c. We generated the
derivatives using the Gr adi ent module. We also set the maximum number of independent variables to 5.

30

% gcc -1$(ADIC)/include -Dad_GRAD MAX=5 -c func.ad.c driver.c
% gcc -0 programfunc.ad.o driver.o -L$(ADI C)/1i b/ $(AD C_ARCH)
-l Gradient -l ADIntrinsics-C-Im

31

Chapter 9

Handling C Preprocessor Directivesand
M acros

The C preprocessing facility allows macros and directives to be defined. The portability and flexibility of C
programs derive in part from this preprocessing facility. However, a translator typically sees the source only
after it has been run through the preprocessor, converting it into legal ANSI-C translation units, which then can
be correctly parsed. Hence, any preprocessor directives and macro names will be lost in the translated source. In
most instances, no problems result. However, some of the portability and flexibility provided by the preprocessor

facility are lost. The areas where this loss can occur are examined below:

o Preprocessor conditional directives are used to selectively include or leave out groups of lines within
source files at compile time. However, this decision must be made at the time of translation rather than
be deferred until the compile time of the translated source. The directives are often used for debugging or

handling sections of the source that are machine specific.

e #i ncl ude directives are used to include the contents of the standard or user header files. Since the
implementation of the standard headers is system specific, their contents are not portable across machines

in general.

e A macro can represent any text. A functionlike macro can also take arguments, performing argument
substitutions during the preprocessing stage. Wherever the macro name occurs in the source, it gets
expanded. The expansion of macros does not present any problem if the translated source is compiled
on the same system. However, the expanded macros may not be portable across machines or even across
compilers. For example, some of the macros defined in the standard headers are system-dependent. In
fact, a name may be declared differently depending on the system. A typical example is FI LE, declared in

st di o. h standard header file. It is a macro name in SunOS but at ypedef name in HPUX.

To deal with these potential problem areas, ADIC performs a number of steps to ensure more portability of
the augmented source. ADIC has a preprocessing stage that “pre-treats” the source before it is run through the

C preprocessor and sent on to the parsing stage.

e ADIC must be run separately for each desired choice of conditional directives. To ensure that the C
preprocessor will select the appropriate text block, proper macro values can be passed to ADIC, which
will in turn pass them on to the preprocessor. Macro values may be specified either via the control file or

through a command-line option.

32

In the following example, the original source can either count up or count down depending on the value
of the COUNT_MCODE macro.

#i f COUNT_MODE

for (i =0; i <n; i++) { //count up
#el se
for (i =n-1; i >=0; i--) { //count down
#endi f
func(i, Kk);
}

We must push forward the choice of value for COUNT_MODE to the translation stage by using the control
file segment:

[DEFI NES]
COUNT_MODE = 1

or via the command-line option:

% adi C -v -d gradi ent -D COUNT_MODE=1 source. c

To handle the #i ncl ude directive problem, ADIC marks the locations of any included text and stores the
names of the original header files. When ADIC is generating the augmented source, the entire contents of
the standard headers are replaced with the original directives.

In the case of user headers, in most cases, it is not necessary to reconstruct the original #i ncl ude direc-
tives since it is assumed that the user headers are written in a portable fashion. However, the user could
specify a command line option (- u), which will perform the reconstruction, with one difference. The
reconstructed #i ncl ude directive is changed to include the augmented header file, using the standard
naming scheme. For example, names are changed as follows:

#i ncl ude "nyincl ude. h" => #i ncl ude "nyi ncl ude. ad. h"
#i ncl ude "commoncode. c" => #i ncl ude "conmmoncode. ad. c"

With the - u option, the header files must be processed separately by ADIC. Without this option, the header
files need not be processed by ADIC.

In order to prevent expansion of certain macros, the ADIC preprocessing stage can either remove the
macro definition if defined within a user include (when the - u option is used) or undefine it immediately
after its definition in a standard header. Hence, the C preprocessor will not see the macro definition and
thus will not expand the macro used in the source. To turn the macro name into a syntactically valid C
construct, the user has to specify a suitable replacement definition (e.g., a variable declaration or a function
prototype).

The list of unexpanded macro names along with their replacement definitions can be specified in the
control file under the UNEXPANDED. MACROS section. The replacement definition does not need to make
semantic sense, the only requirement is that it can be parsed correctly. For example, suppose MY_MAX is
defined in terms of DBL_MAX, which is a system-dependent maximum double-precision float value (defined
in the standard header f | oat . h):

#define MY_MAX DBL_MAX/ 2.0

33

To preserve this name wherever it is used instead of expanding it into the actual number (since DBL MAX
will get expanded also), the following binding can be added:

[UNEXPANDED_MACROS]
MY_MAX = [static double MY_MAX;]

In essence we are moving My_MAX defined in the macro name space into a static floating-point variable in
the C name space. It is important that we turn it into a variable rather than a constant, since ADIC might
optimize a constant away.

As another example, a functionlike macro can be handled as follows:

[UNEXPANDED_MACRCS]
getc = [extern int getc(FILE");]

In this fashion we turn the get c() macro (defined in st di o. h) into a function prototype declaration.
Actually, for ANSI-C source processing (but not for C++), no argument information need be provided.
Hence, the following works just as well:

[UNEXPANDED_MACRCS]
getc = [extern int getc();]

To handle a macro that represents a type, we can do the following:

[UNEXPANDED_MACRCS]
FI LE = [typedef struct _iobuf FILE;]

If the user does not have an idea about what a proper definition should be, the user can manually run the
source through the C preprocessor (e.g., cpp) and check the expansion, then make the appropriate binding.

A potential problem can occur by undefining macros. In some older systems, the definition of a macro is
used to determine whether a standard header has already been included or not. If that macro is the one
undefined, then the header may be included again, causing multiple definition conflicts. For example, on
BSD, the definition of FI LE is checked to determine whether st di 0. h has already been included. To
prevent this from happening, the preprocessing stage will keep track of encountered standard headers and
will ensure that it is not included twice.

34

Chapter 10

Controlling Naming

The original source declares names (identifiers) in various namespaces. Typical names may be function, variable,
or type names. In the process of augmentation, the semantics of these names are changed. For example, doubl e
variable may be changed into DERI V_TYPE variable. In other cases, the semantics remain the same; for example,
an i nt variable is unchanged. A conflict may occur if the original source and the augmented source are used
(e.g., linked) together causing semantic or syntactic conflicts.

To handle these conflicts, names may be systematically changed by prepending them with a certain prefix.
Depending on the type of hames, we need to handle them differently:

¢ Function names: Each derivative enhanced function must have its name changed if the original function
is also to be used in the same program. The default solution adopted by ADIC is to always prepend all
occurrences of function names (both use and definition) with the prefix. The prefix is controlled by the
pref i x binding. There are two exceptions to prefixing function names. First, in the case of the standard
library routines, the hames should not be changed. Since we cannot easily know the names of all the
standard library routines, we store the names of all library routines declared inside any standard header
included in the source. Whenever such a name is encountered, the function is considered inactive and
hence its name does not get modified. Second, the calls to standard math library routines are handled
specially. The names of the standard math routines are listed in the control script file.

o Typedefs: Typedefs are effectively an alias of some other type, a shorthand for a type composition. If the
base type contains a float type somewhere, then we may wish to change the name. The t ype_prefi x
binding may be used to attach a prefix to all type names.

e structs, unions, and classes: Struct and union tag names can also be attached with a prefix through the
t ype_pr ef i x binding.

e C++ Methods: Since class methods are declared with respect to a particular class, these need not and
should not change, especially the overloaded operators.

o Variable names: Only global variables need to be changed, and only if both the original and the derivative
functions are to be used in the same program. The prefix is controlled by var _pr ef i x binding.

All identifiers declared inside standard headers should not be changed, since the derivative code will include
the same standard headers. In the case of external numerical libraries such as the BLAS, either the source must
be available to be run through ADIC or the differentiated version must be available. In future versions, ADIC
distributions may include the derivative-enhanced versions of popular numerical libraries.

35

Chapter 11

Handling Intrinsic Calls

Invoking an intrinsic function through a function pointer may cause problems, since all intrinsic functions must
be handled specially and replaced by a specific section of code. The problem arises from the lack of an address
associated with this section of code.
The solution is to create a wrapper function that calls the intrinsic function. Whenever an address of an
intrinsic function is taken, it should be changed into the address of the corresponding wrapper function.
Eventually, ADIC will automatically perform this step. For now, the user must do this step manually.

36

Chapter 12

Advanced Control

This section is for advanced users. Our current focus is on guarding global declarations.

Global declarations such as enums, and any typedefs/variables/structs declared as inactive can be guarded
by ADIC-generated unique #ifdef directives. This also obviates the need for changing the enum values.

To generate guards, specify the flag - g when invoking adiC.

The guard will be added only to header files; it doesn’t make sense to guard the generated source code. To
determine whether afile is a header or not, ADIC uses the suffix name. The header filename must have the suffix
hor . H.

The guard macro is distinct for each header file; otherwise the user must include original headers for each
differentiated header included even if the user may be interested in using only one of the original headers.
A bigger problem is that different make rules must be added for user codes that include the original and the
differentiated headers, and for ADIC-generated code that includes only the differentiated code. To solve this
problem and the extra hassle of keeping track of which macros to define, ADIC uses the fact that most headers
have guards themselves; these same guards are used for our purpose as well. The naming scheme of these guards
is usually based on some rule (e.g., __basename_suffix__). The user can specify this type of rule in the control
script using a printf-like format string.

[GENERAL]
guard = __ % %__ ; (generates the above rule)
guard = __ 9B %5 ; (generates the above rule with uppercasing
;the letters)
% -- base nane (e.g., xx in xx.yy, and X.y in x.y.z)
% -- suffix (yyinxx.yy, and z in x.y.z)
9B -- uppercased base nanme
%5 -- uppercased suffix name

Output filename generation rule: The filename generation rule uses the same format string as the guard
format.

[GENERAL]
filename_trans
filename_trans

%. ad. % ;(the default rule)
ad_%. % ; (generates what the user wants)

37

Chapter 13

Troubleshooting

In this section, potential problems are discussed and possible solutions offered:

If (supported) intrinsic function calls with the prefix (e.g., ad si n) are generated, the user must make sure
that mat h. h is included using angle brackets.

If the collection of source files is too large, ADIC will not be able to handle them due to lack of memory.
In this case, the user must invoke ADIC separately for each source.

If multiple definitions are generated after processing each source separately, the user must make sure to
use -t option for all sources except one.

ADIC tries to ensure that any function referenced in the source and is declared within standard headers
does not get prepended with the prefix. However, it is possible that some function gets prefixed (especially
when only a partial or no prototype info is given). When this occurs, the user must manually put the name
of the function in the 1 NACTI VE_FUNCTI ONS section. This problem usually occurs when many source
files are processed together.

ADIC expands/processes all macros during derivative generation, unless those macros are specified un-
der the UNEXPANDED MACRGS section. If the source contains C preprocessor directives such #i f de-
fi ned(XXX) and these macros are defined through the compiler command-line arguments, the user must
make sure to define the proper macro definition either through ADIC command-line or through the control
scripts. If the macro definitions change, ADIC would need to be run again.

When testing new modules, the user must make sure the corresponding control section associated with the
new module is set up correctly.

38

Chapter 14

Known Problems

In this section, known problems and possible workarounds are discussed:

¢ In C++ mode, the parser does not recognize the external language specifier “C++”. This problem will
break some standard C++ headers such as i ost r eam h. Also, default arguments cannot be handled. No

workaround.

¢ In ANSI C, goto labels have function scope. ADIC expects goto label names to be unique within each
translation unit.

e Currently, C++ keywords such as newand del et e are recognized as reserved tokens even when process-
ing C files. Hence, make sure these names are not used.

Check the ADIC web site for a more current list of problems and workarounds.

39

Bibliography

[1] Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank. Computational Differentiation:
Techniques, Applications, and Tools. SIAM, Philadelphia, 1996.

[2] Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. ADIFOR 2.0: Automatic differen-
tiation of Fortran 77 programs. IEEE Computational Science & Engineering, 3(3):18-32, 1996.

[3] Christian Bischof and Lucas Roh. The automatic differentiation intermediate form (AIF), 1996. Unpub-
lished Information.

[4] Christian Bischof, Lucas Roh, and Andrew Mauer. ADIC — An Extensible Automatic Differentiation
Tool for ANSI-C. Preprint ANL/MCS-P626-1196, Mathematics and Computer Science Division, Argonne
National Laboratory, 1996.

[5] S. Brown. OPRAD - a users guide to the OPtima Reverse Automatic Differentiation tool. Technical report,
Numerical Optimization Centre, University of Hertfordsshire, 1995.

[6] Andreas Griewank. On automatic differentiation. In Mathematical Programming: Recent Developments
and Applications, pages 83-108, Amsterdam, 1989. Kluwer Academic Publishers.

[7] Andreas Griewank, David Juedes, and Jean Utke. ADOL-C, a package for the automatic differentiation of
algorithms written in C/C++. ACM Transactions on Mathematical Software, 22(2):131-167, 1996.

[8] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI — Portable Parallel Programming with
the Message Passing Interface. MIT Press, Cambridge, 1994.

[9] Andrew Mauer, Christian Bischof, and Alan Carle. The ADIntrinsics system for handling automatic dif-
ferentiation of Fortran 77 intrinsics, 1996. Unpublished information, Argonne National Laboratory.

[10] Michael Monagan and Rene R. Rodoni. An implementation of the forward and reverse mode of automatic
differentiation in Maple. In Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank, edi-
tors, Computational Differentiation: Techniques, Applications, and Tools, pages 353-362. SIAM, Philadel-
phia, 1996.

[11] Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, 1981.

[12] Nicole Rostaing, Stephane Dalmas, and Andre Galligo. Automatic differentiation in Odyssee. Tellus,
453(5):558-568, October 1993.

40

[13] Dimitri Shiriaev and Andreas Griewank. ADOL-F: Automatic differentiation of Fortran codes. In Martin
Berz, Christian Bischof, George Corliss, and Andreas Griewank, editors, Computational Differentiation:
Techniques, Applications, and Tools, pages 375-384, Philadelphia, 1996. SIAM.

41

